Modifying the Classic Peak Picking Technique Using a Fuzzy Multi Agent to Have an Accurate P300-based BCI

نویسندگان

  • Gholamreza Salimi Khorshidi
  • Ayyoub Jaafari
  • Ali Motie Nasrabadi
  • Mohammadreza Hashemi Golpayeghani
چکیده

EEG-based brain computer interface (BCI) provides a new communication channel between the human brain and a computer. The classification of EEG data is an important task in EEG-based BCI. In this paper we present a new modification on classic "Peak Picking" to make a better detection for a specific pattern in EEG. The new method shows a significant improvement in P300 detection which is a common approach in BCI systems. The proposed model uses more than one scalp electrode and combines the outputs with a fuzzy technique, to detect P300 cognitive component.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of classic P300 detection methods' inferences in a framework of fuzzy labels

OBJECTIVE Designing a reliable and accurate brain-computer interface (BCI) is one of the most challenging fields in biomedical signal processing. To achieve this goal, different methods have been adopted in different blocks of a typical BCI system (i.e., in preprocessing, feature extraction, feature classification and feature selection blocks). Since BCI's speed plays a crucial role in its succ...

متن کامل

Control of a 2-DoF robotic arm using a P300-based brain-computer interface

In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...

متن کامل

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

سنجش عملکرد سامانه‌های رابط مغز و رایانه P300 Speller به‌ازای ماتریس نمایش ردیف و یا ستون (RCP) و نمایش حروف زبان فارسی

As a Brain computer interface system, BCI P300 Speller tries to help disabled people and patients to regain some of their lost ability with allowing communication via typing. The ability of personalization is one of the most important features in a BCI system, so the typing language as a personalization factor is an important feature in a BCI speller. Most prior researches on P300 Speller has f...

متن کامل

Functional Brain Connectivity as a New Feature for P300 Speller

The brain is a large-scale complex network often referred to as the "connectome". Cognitive functions and information processing are mainly based on the interactions between distant brain regions. However, most of the 'feature extraction' methods used in the context of Brain Computer Interface (BCI) ignored the possible functional relationships between different signals recorded from distinct b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007